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Almtract--Empirical studies indicate that the individual attributes of both faults and extension fractures follow 
power-law scaling. Aggregate properties of fracture populations are important in a variety of problems and can 
be specified in terms of the scaling parameters of individual fracture attributes. Development of an expression for 
an aggregate property requires consideration of a number of independent factors, including the topologic 
dimension of the aggregate property, the topologic dimension of sampling and the possibility of scaling changes 
for fractures that span some mechanically significant layer. The Riemann zeta function provides an alternative to 
integration for the analytical and numerical solution of aggregate problems. 

Previous work regarding aggregate properties of fracture populations has focused on the strain due to faulting. 
New expressions are developed here for other aggregate properties of interest: fracture surface area, fracture 
porosity, fracture permeability and shear-wave anisotropy. A general characteristic of these aggregate properties 
is that, for most values of scaling exponents, the aggregate properties are dependent on the size of the sampling 
domain. This implies that the aggregate properties are scale-dependent. Additionally, it appears that fracture 
surface area is concentrated in the smallest fractures of many populations. Fracture porosity is concentrated in 
the largest fractures of most populations but not as strongly as fracture permeability, which probably derives 
almost entirely from the largest fractures in populations. 

INTRODUCTION 

Many empirical studies have demonstrated that a variety 
of shear and extension fracture attributes commonly 
exhibit power-law scaling (e.g. Kakimi 1980, Shaw & 
Gartner 1986, Gudmundsson 1987a, Villemin & Sun- 
woo 1987, Childs et al. 1990, Heifer & Bevan 1990, 
Scholz & Cowie 1990, Walsh et al. 1991, Jackson & 
Sanderson 1992, Marrett & Allmendinger 1992, Davy 
1993, Peacock & Sanderson 1994, Wojta11994, Carter & 
Winter 1995). Knowledge of these scaling relations is 
sufficient to address some problems directly, such as the 
relative abundance of fractures in different size ranges; 
however, many problems center on the aggregate 
properties of a fracture population rather than the 
attributes of individual fractures. For example, strain 
due to faulting, fluid permeability of rock containing 
open fractures and shear-wave anisotropy due to frac- 
tures are most meaningful in reference to entire fracture 
populations. Such aggregate properties may be ex- 
pressed in terms of individual fracture attributes and 
generalized with the scaling relations of those attributes; 
however, a number of fundamental issues must be 
addressed first. 

Aggregate properties of fracture populations may be 
expressed in some cases as linear, surficial or volumetric 
parameters. The individual fracture attributes used to 
express the aggregate properties depend on the aggre- 
gate definition chosen. An additional complication 
stems from the limitation that fracture observations 
usually are limited to one- or two-dimensional samples, 
so the topologic dimension of sampling commonly 
differs from that of the desired aggregate property. This 
requires an understanding of how fracture-attribute 

scaling varies with the topologic dimension of sampling. 
One also must consider the possibilities of scaling 
changes at mechanical boundaries of a fracture popu- 
lation, such as imposed by sedimentary layering or the 
finite thickness of the schizosphere. Scaling changes 
might simply reflect the topologic difference between 
the regions occupied by fractures at different scales, but 
the changes could be more fundamental. Finally, a 
variety of mathematical techniques are available to 
express aggregate properties in terms of the scaling of 
individual fracture attributes. The Riemann zeta func- 
tion has not been used previously in this context, but it 
should provide better accuracy than integral expressions 
of aggregate properties. 

The objectives of this contribution are (1) to review 
the scaling of some key fracture attributes and develop 
all relationships among the scaling parameters; (2) to 
examine in detail the issues mentioned above, which are 
the source of significant confusion and are general prob- 
lems in estimating aggregate properties; and (3) to 
derive specific expressions for a variety of important 
aggregate properties of fracture populations. Hopefully, 
the aggregate expressions developed here will be useful 
not only for the problems considered, but also as illus- 
trations for the formulation of other aggregate proper- 
ties. 

FRACTURE SCALING RELATIONS 

The scaling of fault populations has received much 
attention during the past decade. Consensus indicates 
that the cumulative number of faults (N) in a specific 
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Table 1. Notation 

Term Meaning 

N Cumulative number of faults or extension fractures 
R Size of sampling domain (length, area or volume) 
D Fault displacement 
L Fault length 
8 Fault heave 
Mg Fault geometric moment 
b Extension fracture aperture 
1 Extension fracture length 
2 Fracture plane ellipticity 
A Coefficient of N-D power law for faults 
C Exponent of N-D power law for faults 
H Coefficient of N- L  power law for faults 
E Exponent of N-L  power law for faults 
G Coefficient of D-L power law for faults 
M Exponent of D-L power law for faults 
a Coefficient of N-b power law for extension fractures 
c Exponent of N-b power law for extension fractures 
h Coefficient of N-l  power law for extension fractures 
e Exponent of N-I power law for extension fractures 
g Coefficient of b-I power law for extension fractures 
m Exponent of b-l power law for extension fractures 
B Exponent of N-Mg power law for faults 

Riemann zeta function 
e Fault strain 
a Fracture surface area 
q~ Extension fracture porosity 
k Extension fracture permeability 
7 Shear-wave anisotropy 
v Shear-wave velocity 

The cumulative number of extension fractures (N) in a 
specific region having aperture (and/or mineral-fill 
thickness) ->b or length ->l may be expressed as: 

N = Rab  -c  (2a) 

or  

N = R h l  - e ,  (2b)  

where R is the size of the sampling domain and a, h, c 
and e are empirical scaling constants (Gudmundsson 
1987b, Barton & Hsieh 1989, Wong etal .  1989, Heifer & 
Bevan 1990, Barton & Zoback 1992, Hatton et al. 1993, 
McCaffrey et al. 1993, 1994, Sanderson et al. 1994, Gross 
& Engelder 1995). Aperture and length scale as: 

b = gl m, (2c) 

where g and m are empirical scaling constants (Johnston 
1992, 1994, Hatton etal .  1994, Vermilye & Scholz 1995). 
Thus, the exponents of the power laws are related by e = 
m c  and the coefficients by a = gCh, from which we see 
there are only four independent scaling constants for the 
length and aperture attributes of an extension fracture 
population. Additionally, by setting N = 1 we find that 
a = bCl/R and h = l~/R, where subscripts of fracture 
attributes refer to the value of N. 

region having displacement - D  or length ->L may be 
expressed as: 

N = R A D  - c  (la) 

o r  
N = R H L  -E ,  (lb) 

where R is the size of the sampling domain and A, H, C 
and E are empirical scaling constants (see Table 1 for 
summary of notation; Kakimi 1980, Shaw & Gartner 
1986, Gudmundsson 1987a, Villemin & Sunwoo 1987, 
Childs etal .  1990, Heifer & Bevan 1990, Scholz & Cowie 
1990, Walsh et al. 1991, Jackson & Sanderson 1992, 
Marrett & Allmendinger 1992, Walsh & Watterson 
1992, Davy 1993, Scholz et al. 1993, Marrett 1994, 
Patton et al. 1994, Peacock & Sanderson 1994, Wojtal 
1994, Carter & Winter 1995, Gross & Engelder 1995, 
Cladouhos & Marrett 1996). In a statistical sense, dis- 
placement and length scale as: 

D = G L  M, (lc) 

where G and M are empirical scaling constants (Walsh & 
Watterson 1988, Scholz & Cowie 1990, Marrett & All- 
mendinger 1991, Cowie & Scholz 1992, Gillespie et al. 
1992, Dawers et al. 1993). Thus, the exponents of the 
power laws are related by E = M C  and the coefficients 
by A = GCH,  from which we see there are only four 
independent scaling constants for the length and dis- 
placement attributes of a fault population. Additionally, 
by setting N = 1, we find that A = DCl/R and H = L f / R ,  
where subscripts of fault attributes refer to the value of 
N. 

More recent work has led to the development of 
similar relations for populations of extension fractures. 

THEORETICAL CONSIDERATIONS 

The notion of 'dimension' may enter into problems of 
aggregate properties of fracture populations in at least 
five forms, generating both semantic and conceptual 
confusion. (1) The aggregate property may be tensorial; 
(2) the aggregate property may describe spatial regions 
of different dimension; (3) the sampling of individual 
fractures in a population may be done along a line, over 
a surface or through a volume; (4) the scaling of indi- 
vidual fracture attributes may be considered fractal in 
some contexts, introducing the concept of fractal dimen- 
sion; and (5) the attribute scaling of fractures that have 
reached critical dimensions defined by the fractured 
region may differ from the attribute scaling of fractures 
that have not reached such critical dimensions. Each of 
these aspects of an aggregate problem are distinct. 

The tensorial character of some aggregate properties 
is dimensional in the sense, for example, that strain may 
be considered simultaneously in all spatial directions 
about a point (three-dimensional strain ellipsoid) or in 
only one particular direction (one-dimensional longi- 
tudinal strain). This is clearly distinct from the other 
dimensions. The second and third aspects are akin to 
one another, but distinct. An aggregate property may 
refer to phenomena along a l ine,  over a surface or 
though a volume; sampling may describe phenomena in 
the same topologies. However, the dimensions of an 
aggregate property and sampling can differ, for example 
when attempting to address the strain through a three- 
dimensional volume based on data collected along a line 
or a surface passing through the volume. Ideally, the 
aggregate property and sampling dimensions would 
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Exponents Coefficients 

Small faults Cv=Cs+I/M=CT+2/M Ev=Es+I=ET+2 

Small extension 
fractures Cv=Cs+l/m=cT+2/m ev=es+ l=eT+2 

Large faults C v = C s= C T+ 1/M Ev = Es = ET + 1 

Large extension 
fractures Cv = Cs = CT+ 1/m ev= es = eT+ 1 

AvCv=~,AsCsGllM=42ATCTG21Ml~r 

avCv= 2asCsgl/m =42aTCTg21m /zr 

AvCv=AsCs=ATCT G1/M 

avc v = asc s = aTCTg llm 

HvEv=2HsEs=42HTET/Jt 

hvev= 2hses=4~.hxeT/:t 

HvEv=HsEs=HTET 

hvev=hses=hTeT 

Subscripts of scaling constants indicate sampling topology: V--volumetric sampling, S--surficial sampling (on planes perpendicular to minor 
axes of elliptical fractures) and T--linear sampling (on lines perpendicular to fractures); 2 is ellipticity of small fractures, as defined by ratio of 
major axis to minor axis lengths. 

always be equal, but they commonly differ due to 
sampling limitations. Both are considered in detail be- 
low, where they are referred to as the topologic dimen- 
sions of a problem. The aspect of fractal dimensions is 
not explicitly germane to the discussion in this paper, 
which is independent of the specific spatial distribution 
of fractures, so the concept is not further pursued. 
However, the observed scaling parameters of fracture 
attribute size distributions usually depend on the sam- 
pling topology and these relationships are fully devel- 
oped below. The fifth aspect is often confused with the 
second and third, with which it may be related despite 
being fundamentally independent. The systematics of 
scaling changes within a population that spans the criti- 
cal dimension of a fractured region are not yet under- 
stood, but some possibilities are outlined below. The 
final theoretical topic addressed in this section is the 
analytic and numerical evaluation of aggregate proper- 
ties from individual fracture attribute scaling. Inte- 
gration, summation and use of the Riemann zeta 
function are each considered. 

Topologies of aggregate property and sampling 

The topology of a problem of aggregate properties is 
significant in two ways. First, the aggregate property to 
be analyzed has an implicit or explicit topologic dimen- 
sion. In some cases, one may choose the topologic 
dimension of the aggregate property to suit the available 
data (see following paragraph) or the problem at hand. 
For example, we may address fault strain along a line, 
over a surface or through a volume. The choice is non- 
trivial, because the appropriate expression for fault 
strain varies according to our choice. For scalar rep- 
resentation of strain within a volume, the strain resulting 
from the displacement on a fault is the geometric mo- 
ment of the fault (average displacement times fault area) 
divided by the volume of the region of interest (e.g. 
Marrett & Allmendinger 1990). In this case, we may 
think of the fault-area term of the geometric moment as 
a weighting term. For strain over a surface, the two- 
dimensional analog to the geometric moment is the 
product of average fault displacement (averaged along 
the intersection of the fault with the surface of interest) 
and fault length, so the displacements of faults in a 
population are weighted by the fault lengths. For longi- 
tudinal strain along a line (referred to below as linear 

strain), the one-dimensional analog to the geometric 
moment is simply the fault displacement where the line 
of interest crosses the fault. The faults in a population 
are not weighted differentially because each fault occu- 
pies an identical portion of the line (i.e. a point). 
Consequently, a linear strain estimate may be deter- 
mined independently of the fault length distribution and 
the fault displacement-length relation, so fault lengths 
do not enter into the problem (Marrett & Allmendinger 
1992). Nevertheless, as demonstrated by Peacock & 
Sanderson (1993), fault strain analysis along a line or 
over a surface is not limited to zeroth- or first-order 
tensors. The important point is that the topologic dimen- 
sion of the aggregate property of interest may determine 
the individual fracture attributes needed to solve a 
problem. 

The second way topology enters a problem of aggre- 
gate properties is via sampling. Although some of the 
aggregate properties we may wish to determine for a 
population of fractures are three-dimensional, most 
data sets represent one-dimensional (scanline or bore- 
hole) or two-dimensional (map or cross-section) sam- 
pling of fracture populations. In some cases, it is possible 
to express an aggregate problem to accommodate the 
topologic dimension with which sampling is most confi- 
dently done. However, in many cases, one needs to 
compare independent data sets collected with different 
topologies (e.g. Marrett 1994) or the aggregate property 
of interest is only meaningful at a topologic dimension 
infeasible for sampling (e.g. see section entitled Exten- 
sion fracture shear-wave anisotropy below). This re- 
quires an understanding of how sampling topology 
affects observed fracture-attribute scaling. 

Theoretical arguments and numerical experiments 
suggest that observed scaling parameters vary with sam- 
pling topology in a systematic manner. If fracture loca- 
tions and aspect ratios of fracture surfaces are 
uncorrelated with fracture sizes and orientations and if 
the fractures are embedded in a three-dimensional vol- 
ume (i.e. 'small' fractures, see following section), then 
the probability of sampling a specific fracture is then 
proportional to the fracture area (i.e. length squared) 
for one-dimensional samples and proportional to the 
fracture length for two-dimensional samples (Marrett & 
Allmendinger 1991). Specific relationships among the 
exponents and coefficients for the different sampling 
topologies (Table 2) follow immediately from the sam- 
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Fig. 1. Numerical experiment illustrating effect of sampling topology. (a) Cumulative number-length plot for fractures in 
three-dimensional (complete) sample, following N = L -28. (b) Map view of 334 fractures in a two-dimensional sample 
from a synthetic three-dimensional population comprising 4000 fractures, with bold line showing position of one- 
dimensional sample (36 fractures). (c) Cumulative number-length plot for fractures in two-dimensional sample, which 
follow theoretical prediction of N= 1.56/ - l a .  (d) Cumulative number-length plot for fractures in one-dimensional sample, 

08 which follow theoretical prediction of N=3.5/- ' . The lines shown in (c) and (d) are not empirical regressions to the data, 
but instead were determined analytically using the relations given in Table 2. 

piing topologies and discrete numbers (the derivatives of 
cumulative numbers) by assuming that one- and two- 
dimensional samples are taken perpendicular to the 
fracture orientations and that the fractures have ellipti- 
cal surfaces (Marrett & Allmendinger 1991, Westaway 
1994). 

The relations among scaling parameters for fractures 
that span a two-dimensional shell (i.e. 'large' fractures, 
see following section) are slightly different. In this case a 
shell-parallel two-dimensional sample reveals the entire 
three-dimensional population (probability of sampling 
equals 1 for all large fractures), and the probability of 
sampling a specific fracture in a shell-parallel one- 
dimensional sample (or a shell-perpendicular two- 
dimensional sample) is proportional to the fracture 
length (Marrett & Allmendinger 1991). The relation- 
ships among exponents and coefficients for shell-parallel 
samples (Table 2) follow from the assumption that one- 

and two-dimensional samples are taken perpendicular 
to the fracture orientations and that the fractures have 
rectangular surfaces. 

A numerical experiment illustrates the sample- 
topology effect with a synthetic three-dimensional popu- 
lation of 4000 square fractures generated such that E v = 
2.8 and H v = 1 (Fig. la). The fractures were located 
randomly within a cube having edges equal in length to 
the largest fracture, and the fractures parallel one side of 
the cube. Two- and one-dimensional samples were 
taken perpendicular to the fractures at random positions 
through the volume (Fig. lb). The lengths of fractures in 
the two-dimensional sample (Fig. lc) are consistent with 
the values of Es -- 1.8 and H s = 1.56 predicted theoreti- 
cally (Table 2) and the lengths of fractures in the one- 
dimensional sample (Fig. ld) are consistent with the 
values of ET = 0.8 and HT = 3.5 predicted theoretically 
(Table 2). Notice that the steep segments of the length- 
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number plots for the longest fractures in the one- and 
two-dimensional samples are not sampling artifacts, but 
a systematic result of low-topology sampling. These 
steep segments are not the result of censoring (e.g. 
Baecher & Lanney 1978, Barton & Zoback 1992); they 
may reinforce censoring artifacts in natural fracture 
populations and might be confused with censoring arti- 
facts. 

Changes in scaling 

Although the fracture scaling relations are conven- 
tionally written in a form that ignores limits, it is clear 
that limits must exist. We expect fracture scaling to have 
a lower limit imposed by changes in material properties 
and boundary conditions at the scale of mineral grains 
(Walsh & Watterson 1992). An upper limit for faults is 
imposed by the finite thickness of the schizosphere. For 
example, earthquakes that span the schizosphere 
('large' earthquakes) scale, but they do so in a manner 
distinct from earthquakes contained by the schizosphere 
('small' earthquakes) and the details of the change are as 
yet controversial (e.g. Main 1992, Pacheco et al. 1992, 
Romanowicz & Rundle 1993, Scholz 1994). 

Based on the change in earthquake scaling, it is 
reasonable to conjecture that the scaling of large faults 
differs from that of small faults; however, too few data 
are available to reach conclusions. Additionally, due to 
the limitations of fault sampling, it is difficult to ade- 
quately compare the scaling of large and small faults. 
Some low-topology data sets (e.g. one-dimensionally 
sampled displacements of Walsh et al. 1991) appear to 
show consistent power-law exponents across the large/ 
small transition (CT,arse = CTsmall), indicating a change in 
scaling for the complete three-dimensional fault popu- 
lation (Cv,ar,, = CT,ar,o + 1/M, but Cvsm,,, = CT, m,,, + 2/M). 
However, other low-topology data sets (e.g. two- 
dimensionally sampled lengths of Marrett 1994) appear 
to show more negative exponents for large faults than 
for small f a u l t s  (Es,arg ¢ = 1 + Es~m,,9), possibly indicating 
consistent scaling across the large/small transition for 
the complete three-dimensional fault population (Ev,o,,o 
= Es,or,o = Ev,m,,, = Es,ma,, + 1). More data sets are needed 
in which large and small faults from a single region may 
be studied. 

It is also possible that the upper limit of fracture 
scaling will occur at a significantly smaller scale than the 
thickness of the schizosphere. Fractures may be con- 
fined to specific litho-mechanical layers (e.g. Gross & 
Engelder 1995), such that fracture scaling in one layer is 
only indirectly related to scaling in other layers. Even 
where some fractures span a significant litho-mechanical 
layer, the layer thickness may define distinct populations 
of intra- and trans-layer fractures. A special case of this 
idea is the hypothesis that intra-horse faults (i.e. those 
bounded by tip lines) and horse-bounding faults (i.e. 
those bounded by branch lines) in a duplex system scale 
differently (Wojta11994). Subsequent usage of the terms 
'large' and 'small' in this paper will reflect this more 
general reference to any mechanically significant layer. 

Evaluation 

A final theoretical hurdle that must be overcome 
to estimate aggregate properties for a population of 
fractures is evaluation of the appropriate expression 
of individual fracture attributes. A common form of 
evaluation is integration (e.g. Scholz & Cowie 1990, 
Westaway 1994); however, this implicitly treats the 
discontinuous size distributions of fracture attributes as 
continuous functions. Integration generally results in an 
underestimate of aggregate properties (Marrett & 
Allmendinger 1991). For example, in equation (7) of 
Scholz & Cowie (1990) C < 1.5 implies that the total 
geometric moment of a fault population is less than the 
geometric moment of the single largest fault and C = 0 
(i.e. only one fault) implies that the total geometric 
moment is zero. Clearly, it is preferable to use sum- 
mation of actual data when estimating aggregate proper- 
ties for a specific problem; integration may be 
satisfactory when accounting for fractures under- 
represented in a data set (Marrett & Allmendinger 1992) 
due to truncation (e.g. Baecher & Lanney 1978, Barton 
& Zoback 1992). 

For purposes of evaluating the sensitivity of aggregate 
properties to the relevant power-law exponent, it is also 
desirable to formulate closed-form analytical ex- 
pressions for aggregate properties. Integration provides 
one method of deriving such expressions (e.g. Scholz & 
Cowie 1990); however, as indicated above, the results of 
integration can yield non-physical results. A more accu- 
rate alternative to integration is provided by the Rie- 
mann zeta function (Apostal 1957), which is implicit in a 
general expression of aggregate properties. The Rie- 
mann zeta function (~) is the infinite series: 

~(x) = 1 + 2 -x + 3 -x + 4 -x . . .  (3) 

and converges for arguments x > 1. Note that ~ may be 
substituted into equation (12) of Marrett & Allmend- 
inger (1991): 

Mg,o,,, = Mg,[1 + 2 -lIB + 3 -1/B + 4-1 lB . . . ] ,  (4) 

yielding 

where Mg, is the geometric moment of the largest fault, 
Mg,o,., is the total geometric moment of the fault popu- 
lation and B is the power-law exponent of the geometric 
moment size distribution. Equation (5) is an equally 
compact, but more accurate, alternative to the equival- 
ent integral formulation [equation (13) of Marrett & 
Allmendinger 1991]: 

B 
Mg'°'a' - 1 - B Mg, .  (6 )  

A good approximation to the Riemann zeta function 
(accurate to three significant figures) may be obtained by 
summing the first three terms of the infinite series and 
taking the first two terms of the Euler-Maclauren sum- 
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Fig. 2. Comparison of Riemann zeta function (thin curve) and inte- 
gration (dashed curve) formulations of aggregate properties. Thick 
curve shows the difference between the factors for the two formu- 
lations. Exponent refers to any exponent of a fracture attribute (e.g. 
fault geometric moment, extension fracture aperture, etc.) in a power- 
law size distribution of the appropriate form for aggregate property 

evaluation, regardless of the sampling topology. 

mation formula (Dahlquist & Bj6rck 1974) to express 
the remainder: 

x + 7  ~(x) ~ 1 + 2 -x + 3 -x -t - -  4 -x. (7) 
2 ( x -  1) 

The Euler-Maclauren summation formula may also be 
used as an alternative to integration when accounting for 
fractures under-represented in a data set due to trunc- 
ation. For example, equation (4) of Marrett & Allmend- 
inger (1992) becomes: 

c (  1 
¢~extrapolation ~ -  (~N N + ~ + 2 C ) ~ N ~ J  ' (8) 

where 6N is fault heave of the Nth largest fault and 
6extrapolatio n is the cumulative heave of faults over the 
size range affected by sampling truncation. As expected, 
the integral formulation for fractures affected by sam- 
piing truncation underestimates their contribution to the 
aggregate property, although the deficit greatly dimi- 
nishes as N increases. In some natural examples (e.g. 
Peacock & Sanderson 1994) the exponent of the relevant 
power-law [e.g. B -> 1 in equation (5)] leads to a non- 
convergent infinite series of the Riemann function. In 
most of these cases, an expression equivalent to 
equation (8) may be used to truncate the Riemann 
function and derive a finite result. The exception to this 
is the case where the power-law exponent exactly equals 
one, in which case the integral formulation of Westaway 
(1994) is the only solution known to the author. 

Both the Riemann and integral formulations of an 
aggregate property [e.g. equations (5) and (6)] may be 
expressed as the product of the relevant term for the 
largest fracture and a factor that depends on the ex- 
ponent of the appropriate scaling relation [e.g. equation 
(3) of Marrett & Allmendinger 1991]. Figure 2 shows 

how this factor for Riemann and integral formulations 
varies as a function of the exponent. The factor for 
integration is less than the factor for the Riemann zeta 
function over the entire range of possible exponents. 
Note that the factor for the Riemann formulation is 
always greater than one, except when the exponent is 
zero (i.e. only one fracture). Unlike the integral formu- 
lation, the Riemann formulation provides meaningful 
results for all convergent values of the power-law ex- 
ponent. 

AGGREGATE PROPERTIES 

A variety of aggregate properties of fracture popu- 
lations are important to many problems. Most previous 
work on aggregate properties has been limited to fault 
strain. Other important aggregate properties include 
total fracture surface area, extension fracture porosity, 
extension fracture permeability and extension fracture 
shear-wave anisotropy. Below, I present treatments for 
these aggregate properties from the scaling of individual 
fracture attributes. 

Subscripts are required here in four ways. As above, 
the subscripts V, S and T indicate sampling topology 
when used with scaling parameters and sampling domain 
size. However, the same subscripts used with aggregate 
properties indicate aggregate property topology, which 
may differ from sampling domain topology. The sub- 
scripts large and small refer to large and small fractures 
relative to some mechanically significant layer. And the 
subscripts 1 and rain modify individual fracture attri- 
butes to indicate the largest or smallest fracture in a 
population. 

Fault strain 

Aggregate strain estimates based on fault-attribute 
scaling have been developed in a variety of contexts 
(Marrett & Allmendinger 1990, 1992, Scholz & Cowie 
1990, Walsh et al. 1991, Jackson & Sanderson 1992, 
Patton et al. 1994, Westaway 1994, Carter & Winter 
1995, Gross & Engelder 1995). These analyses have 
taken a variety of forms representing different sampling 
or aggregate topologies. Westaway (1994) provided the 
most general analysis to date but did not analytically 
address both large and small faults nor the possible 
scaling change at that point, which might follow system- 
atic patterns. Because a complete treatment simul- 
taneously accounting for aggregate property topology, 
sampling topology, large and small faults and general 
scaling changes has not been developed previously, one 
is presented here. 

As described above, strain is determined differently 
according to the topology of the region considered, 
which may be a line (RT), a surface (Rs) or a volume 
(Rv). For incremental deformation (i.e. D << RT), the 
longitudinal strain along a line sample eT (referred to 
below as linear strain) is simply the sum of appropriate 
displacement components D divided by the sampling 
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domain size RT (e.g. Peacock & Sanderson 1993), yield- 
ing for small faults alone: 

e T = Z D s r n a l l - - ~  1 ) D1 
R T  ~ RT' (9a) 

from substitution of equations (la) and (3) into the 
summation, or: 

~.{ 1 Im(l/Cymat,)R(--l+(1/Cwm,)), (9b) eT = b/~- ' - ' -"-  J TsmaU s T s " 
\'+"+'Tsman/ 

by setting N = 1 in equation (la), solving for D 1 and 
substituting the result into equation (9a). The advantage 
of equation (9b) over (9a) is that strain is specified in 
terms of only the coefficient and exponent of the scaling 
law (neither of which will vary with sampling domain 
size) and the size of the sampling domain. An important 
result is that fault strain depends on sample size (except 
when the argument of the Riemann zeta function is 
equal to one), indicating that fault strain generally is 
scale dependent. For a combination of large and small 
faults: 

? Dlarge + Z Dsmall 
gT 

RT RT 

=~.{ 1 ]a(1/cT, )RC_I+(I/CT," )) 
~ - ~ - " - - ] ~  XTlarg e ,arge " 'T  arge 

\ I-'Tlarge/ 

Dx  [ CTlarg e (ATlargeeTDxCTlargel @ 1 )]  
g z 1 - CZlarg e 2 2 C  T ..... 

Dx [1 CTsma" [AT "RTDxC . . . . . .  1 
- ~  __ CTsmall \ sma --  2 "[- ~ ) ] '  

(9c) 

where D x is the critical displacement needed for faults to 
become large, the scaling parameters for large and small 
faults are treated as independent and expressions equiv- 
alent to equation (8) are substituted (last two terms) to 
account for the change in scaling. A simpler expression 
will result once the relationships between large- and 
small-fault scaling parameters are understood. Linear 
strain may be calculated using displacement scaling 
parameters from non-linear sampling or using length 
scaling parameters by applying the various relations of 
Table 2. These equations for linear strain converge if 
CTsma H < 1, although CTlarg e > ] requires an alternative 
expression for the strain due to large faults in equation 
(9c). Expressions similar to equations (9) may be devel- 
oped for longitudinal strain in a specific direction along a 
surface by summing the products of the appropriate 
displacement and length components for each fault and 
dividing by the area of the sampling domain. Likewise, 
the longitudinal strain in a volume is attained by sum- 
ming the products of the appropriate displacement com- 
ponent and projected area for each fault and dividing by 
the volume of the sampling domain. 

One alternative form of the linear strain due to small 
faults [equation (9a)] is the product of the Riemann zeta 
function and the strain due to the largest fault. Values 
determined for CT+,,, commonly fall between 0.7 and 0.9 

(e.g. see references under section entitled Fracture scal- 
ing relations above), suggesting that the total fault strain 
for a population of small faults is typically 2.9-9.6 times 
the strain due to the single largest fault. However, the 
effect illustrated in Fig. 1 will cause the largest faults in a 
one-dimensional sample to have smaller displacements 
than predicted by the power law describing the rest of 
the population, assuming the entire population of small 
faults follows a power law in three dimensions. Conse- 
quently, the total fault strain will be greater than the 
estimate yielded by equation (9a), but less than the 
estimate yielded by equation (9b). These problems are 
eliminated in natural examples for which sufficient data 
are available by summing the strain due to the largest 
faults and using analytical expressions to account for the 
strain due to smaller faults. Equations (9) are provided 
as a conceptual guide to how the various parameters 
influence strain. Despite the complex form of equations 
(9) and their two- and three-dimensional equivalents, 
they involve at most four independent scaling para- 
meters if large and small scaling parameters can be 
expressed in terms of each other. 

Fracture surface area 
Aggregate estimates of total fracture surface area 

based on fracture scaling relations apparently have not 
been developed previously, however total fracture sur- 
face area may be important in a variety of contexts. For 
example, many chemical processes are sensitive to the 
area of fluid/solid interface, and mechanical energy is 
consumed in fracture surface generation during faulting. 
Unlike strain, fracture surface area is only meaningful in 
volumetric terms. Aggregate fracture surface area also 
differs from the strain equivalent in that most observed 
scaling parameters suggest that the quantity does not 
converge (i.e. the argument of the Riemann zeta func- 
tion is less than one). Nevertheless, the total fracture 
surface area (Ov) may be determined by using the 
approximation for the Riemann zeta function ]equation 
(7)] and truncating the sum at the lower limit of fracture 
scaling (lmin) with an expression (O'truncation) analogous to 
equation (8). For small fractures of ellipticity 2: 

oo 

° v =  ~-~ 42 ~ 42 ~ v  "~ -Otruncati°n 
N=I N=min 

[ 2 + 7 ~ ]  

- ~2 12 1 + 2 (-2/%) + 3 (-2/%) + 4(-2/ev)| ev _ . | |  

e v  

 / min + 1 _ _ _  + + 
ev 4;t 1 - -~- 2 

=ff~-{12[ l+2(-2/ev)+3(-z/ev)-4(-2/ev){2+7evl]42 \2(ev - 2)}J 

ev l+e l } ,10, 
+ lmin e V --  2 + 2 " 
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Consequently, for e v > 2 or e s > 1 the length of the 
smallest fractures in the population must be known in 
order to make a useful aggregate estimate of fracture 
surface area. 

Most interpretations of fracture length scaling indeed 
suggest that es > 1 and Es > 1 (e.g. see references under 
section entitled Fracture scaling relations above), so 
most fracture surface area should reside not in the 
largest fractures but in the smallest fractures. Data 
indicate that microfractures follow power-law scaling 
(Wong et al. 1989) that may be consistent with the 
scaling of larger fractures (McCaffrey et al. 1994). If this 
is the case, then, despite the relatively low values typical 
of specific fracture-surface energy (Scholz 1990, p. 114), 
the energy consumed during faulting by the generation 
of microfracture surface could be more significant than 
expected. 

Extension fracture porosity 

The aggregate fracture porosity of open extension 
fractures is analytically identical to the extensional strain 
produced by veins (i.e. filled extension fractures) (Gross 
& Engelder 1995), and equivalent to expressions for 
fault strain. The simplest form for expressing fracture 
porosity is based on one-dimensional sampling, because 
data or assumptions on fracture lengths are unneeded. 
For a one-dimensional sample of fracture apertures 
taken perpendicular to the orientation of fractures form- 
ing a perfectly aligned set, the aggregate fracture poro- 
sity (~a-) of the fracture set is: 

b = ~ ( l l b  1 d 11a(1/%)R(_,+(1,%)) (11) 
a- 

As for fault strain, substitutions were made in deriving 
this result so as to specify fracture porosity in terms of 
the coefficient and exponent of the scaling law (neither 
of which will vary with sampling domain size) and the 
size of the sampling domain. Like fault strain, fracture 
porosity depends on sample size (except when the argu- 
ment of the Riemann zeta function is equal to one) and 
generally is scale dependent. Equation (11) explicitly 
characterizes only one fracture set; multiple sets may be 
characterized by using equation (11) independently for 
each fracture set present in a rock mass and adding the 
results. If a distinction between large and small fractures 
is necessary, an expression equivalent to equation (9c) 
may be used. Values determined for ca` commonly fall 
between 0.7 and 0.9 (e.g. see references under section 
entitled Fracture scaling relations above), suggesting 
that the total fracture porosity for a population of open 
extension fractures is 2.9-9.6 times the porosity due to 
the single largest fracture. It is interesting that the 
scaling of extension fractures is so similar to the scaling 
of faults, perhaps implying that the same mechanism 
organizes the two types of fractures. 

Extension fracture permeability 

The aggregate fracture permeability of open exten- 
sion fractures is most simply expressed using the 'cubic 
law' based on the parallel-plate model (e.g. Lamb 1932, 
Snow 1969). This model assumes single-phase laminar 
flow in fractures having smooth surfaces and constant 
aperture. The parallel-plate model additionally assumes 
that fractures are effectively infinite in length, so a one- 
dimensional sample of fracture apertures taken perpen- 
dicular to the orientation of a fracture set is sufficient to 
characterize permeability. Nelson (1985) discussed the 
treatment of multiple fracture sets, which requires the 
use of permeability tensors. Traditional application of 
the parallel-plate model uses average fracture aperture 
and spacing to characterize the scalar permeability par- 
allel to a fracture set (e.g. Nelson 1985); however, this is 
a poor approach considering the power-law scaling of 
fractures. A better approach is to apply the parallel- 
plate model to each sampled fracture from a fracture set 
and sum the results. Thus, the aggregate fracture per- 
meability (ka`) is: 

b 3 3 b~ 

1 ~.[ 3 la(3/%)R(_l+(3/%)) (12) 

As for fault strain, substitutions were made in deriving 
this result so as to specify fracture permeability in terms 
of the coefficient and exponent of the scaling law 
(neither of which will vary with sampling domain size) 
and the  size of the sampling domain. Again, fracture 
permeability depends on sample size (except when the 
argument of the Riemann zeta function is equal to one) 
and generally is scale dependent. If a distinction be- 
tween large and small fractures is necessary, an ex- 
pression similar to equation (9c) may be used. Values 
determined for ca- commonly fall between 0.7 and 0.9 
(e.g. see references under Fracture scaling relations 
above), suggesting that the total fracture permeability 
for a population of open extension fractures is 1.06-1.15 
times the permeability due to the single largest fracture. 
Even if the expression for fracture porosity is barely 
convergent [i.e. ca- ~ 1 in equation (11)], the total 
fracture permeability is only 1.20 times the permeability 
of the largest fracture. Thus, the single largest fracture in 
a sample should account for virtually all fracture per- 
meability, but smaller fractures should account for most 
of the fracture porosity. 

Extension fracture shear-wave anisotropy 

Fluid-filled extension fractures significantly affect the 
transmission of seismic shear waves through rock 
(Crampin 1987, Thomsen 1995). Shear waves propagat- 
ing in a direction parallel to the orientation of a set of 
fractures are split into components having particle 
motions parallel (velocity = vfas0 and transverse (veloc- 
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ity = Vslow) to the fractures and the resulting shear-wave 
anisotropy y is defined by vfast = (1 + Y)Vsiow (Thomsen 
1995). The shear-wave anisotropy is fundamental ly 
volumetric (the subscript is omit ted here to avoid con- 
fusion with velocity) and may be written in terms of the 
fracture lengths (Thomsen 1995). Using the power-law 
scaling of the fracture lengths: 

1 - v  13 ~ ( 3 / I  ~ 
y = 3(2._ v)  X ~ v  _ a - v  3~2--" v )  \ e v ]  R v  

_ 1 - v ~.[ 3 ~t,(3/,v)o(_l+(3/ev) ) (13) 
3 ( 2 -  -v) b~e--~} "'v " ' v  , 

where v is Poisson's ratio. Substitutions were again 
made in deriving this result so as to specify shear-wave 
anisotropy in terms of the coefficient and exponent  of  
the scaling law (neither of  which will vary with sampling 
domain size) and the size of  the sampling domain.  Shear- 
wave anisotropy depends on sample size (except when 
the argument  of  the Riemann zeta function is equal to 
one) and generally is scale dependent .  The scaling 
relations defined above may be used to express fracture 
porosity and permeabil i ty in terms of shear-wave aniso- 
t ropy,  providing a means of remotely quantifying the 
fluid-flow characteristics of  a fracture population via 
seismic techniques. 

DISCUSSION 

A satisfactory understanding of scaling changes for 
fractures than span mechanically significant layers is yet 
to be developed.  The formalism is available for describ- 
ing such changes and incorporating them into descrip- 
tions of  aggregate properties.  However ,  existing 
observations are insufficient to adequately characterize 
the systematics across the large/small transition. 

It  is interesting that all of the aggregate propert ies  
addressed here yield scale-dependent expressions, ex- 
cept when the argument  of the Riemann zeta function is 
one. In general,  it appears  that larger sampling domains 
should provide larger estimates of an aggregate prop- 
erty, at least over  the range of scales in which fracture 
populations follow consistent scaling relations. This 
phenomenon  has been observed in the case of fracture 
permeabil i ty (Clauser 1992), but well-documented 
examples for other aggregate propert ies  have yet to be 
presented.  The scale dependence of aggregate proper-  
ties seems inconsistent with the common statement ,  
based on power-law scaling of individual fracture attri- 
butes,  that fracture populations are scale invariant. The 
reason for the scale dependence is that (except for 
fracture surface area) larger fractures contribute more 
to aggregate propert ies  than do smaller fractures (when 
the argument  of the Riemann zeta function is greater  
than one) and larger sampling domains statistically en- 
compass larger fractures than do smaller sampling 
domains.  The resulting effect may be visualized as self- 
affine geometry  (e.g. Jackson & Sanderson 1992). 

To date,  the scaling relations of fractures have found 
their most  widespread application in problems of fault 
strain and fault growth. However ,  it is clear that the 
scaling relations of  fractures are useful for a variety of 
problems involving aggregate propert ies  of fracture 
populations.  The aggregate propert ies  addressed here 
presumably represent  only a small subset of  interesting 
properties.  
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